Multi-core Processor Considerations in Modern Day SoC Designs

> Tom Starnes Analyst. Advisor.

OBJECTIVE ANALYSIS Semiconductor Market Research

Three Steps to Processor Use

- Select the Processors
- Build the Processor Complex
- Program the Processors

A Balance of Processors Perform the Required Tasks

- General-Purpose
 Processor
- DSP
- Specialty Processors
- Accelerators

- Task Partitioning
- Architecture (ARM, MIPS, PowerPC...)
- Performance (MHz...)
- Flexibility
- Coordination

Assemble Processors into the SoC

- Memory Hierarchy
- Bus Structure
- Voltage, Clock, and Power Domains
- Process Technology
- SoC and SiP

- EDA / Development Tool Integration
- Validation
- Verification
- Simulation
- Emulation

Power Dynamics

Application Programs Make the SoC Functional

- Operating System
- Application Programs
- User Interface
- Off-the-shelf

- Partitioned to
 Selected Processors
- Integrated
- Conflict-free
- Tested, Certified

- APIs
- CODECs
- IP Stacks
- Interfaces

Multi-Processor SoC

Current Examples

MPC512X High-Performance Multicore Processors

Texas Instruments – DaVinci

Copyright 2007, Strategy Sanity

Appl: Video-oriented <u>Processors</u>: GPP: ARM 926EJ-S DSP: TI 320C64x Accel: Video/Imaging

ARM-specific memory:

16KB Instruction Cache 16KB Data Cache 16KB RAM 16KB ROM

DSP-specific memory:

32KB Instruction RAM/Cache 80KB Data RAM/Cache 64KB Level 2 RAM/Cache

source: Texas Instruments

Texas Instruments – OMAP Evolution

Appl:

OMAP Model	331	750	16×× 17××	2420	2430	3410	3420 3430	VOX 2230	eCosto 1035
General- Purpose Processor	ARM 926	ARM 926E-J	ARM 926E-J			ARM Cortex A8	ARM Cortex A8	ARM 926E-J	ARM 926E-J
		ARM 7		ARM 1136	ARM 1136			ARM 1136	
DSP		C54x	C55x	C55x				C55x	C55x
Image A							ISP		
Video A				IVA	IVA 2	IVA 2	IVA 2	IVA 2	
Graphics		2D	2D	3D	3D	-	PowerVR	3D	2D
Digital RF									DRP

source: Texas Instruments

A = Accelerator ISP = Image Signal Processor IVA = Image Video & Audio A 2D/3D = 2-/3-dimensional graphics A DRP = Digital Radio **Rcopyright** 2007, Strategy Sanity

Handsets, PDA

Texas Instruments – Ultra DSP

Docomo – Future Phone

Copyright 2007, Strategy Sanity

Multiple Processors Are Here

Deal With It !

- Sophisticated Issues
- Balance to the System Needs
- Critical to Execution:
 - Integrated End-to-End Tools
 - Software, Software, Software

Multi-core Processor Considerations in Modern Day SoC Designs

Tom Starnes Analyst. Advisor. Strategy Sanity tom.starnes@ieee.org (512) 345-4074 www.strategysanity.com

Definitions

- MPU = Microprocessor
- MCU = Microcontroller
- DSP = Digital Signal Processor
- RAM = Random Access Memory
- MHz = Megahertz (clock frequency)
- ARM = Popular processor architecture available as intellectual property (IP) from Advanced RISC Machines, ARM Ltd
- MIPS = Popular processor architecture available as IP from MIPS Technology Inc.
- PowerPC = Popular processor architecture managed by IBM and Freescale, with limited availability in IP form
- SoC = system-on-a-chip
- SiP = system-in-a-package (multi-chip, stacked...)
- JPG ~ JPEG = Joint Picture Experts Group
- MPEG = Motion Picture Experts Group
- API = Application Program Interface
- CODEC = coder/decoder
- IP = intellectual property
- IP = Internet Protocol

